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1    Introduction 

A key problem in object recognition is selection, namely, 
the problem of identifying regions in an image within 
which to start the recognition process, ideally by isolat- 
ing regions in an image that are likely to come from a 
single object.  Model-based object recognition methods 
that try to recognize which members of their library of 
models are present in the scene, usually use geometric 
features such as points or edges and try to identify pair- 
ings between data and model features that are consistent 
with a rigid transformation of the object model into im- 
age coordinates. The large number of such pairings that 
need to be examined' in cluttered scenes leads to a com- 
binatorially explosive search problem. It has been shown 
that this search can be considerably reduced if recogni- 
tion systems are equipped with a selection stage where 
subsets of data features can be isolated that are likely 
to come from a single object, thus allowing the search 
to be focused on those matches that are more likely to 
lead to a correct solution [9]. This isolation can be either 
based solely on image data (data-driven) or can incorpo- 
rate the knowledge of the model object (model-driven). 
Even though selection can be of help in recognition, it 
has been found difficult to achieve in practice.   What 
makes selection so difficult? In the ideal case, if the ap- 
pearance of the desired object in the scene were known, 
and objects in the scene were nicely separated and dis- 
tinguishable from the background, and the illumination 
conditions were known, then even simple methods that 
rely on intensity measurements would work well to ex- 
tract groups of features. But in reality, the appearance 
of the object is not known.   In addition, illumination 
conditions and surface geometries of objects present in a 
scene can cause problems of occlusion, shadowing, spec- 
ularities, and inter-reflections in the image and make 
it difficult to interpret groups of data features such as 
edges and lines as belonging to a single object.   Previ- 
ous approaches have mainly considered data-driven se- 
lection by treating as a problem of grouping data fea- 
tures based on some constraint such as parallelism, or 
collinearity, [17], distance and orientation [13], and re- 
gions enclosed by a group of edges [3] to capture some 
meaningful structure in a scene.   Grouping was intro- 
duced as a technique of reducing the search involved in 
recognition by dividing the search for matching features 
into a search for a matching pair of groups followed by 
a search for corresponding features within the matching 
groups. To effectively reduce the search in recognition, 
however, a grouping scheme must produce a small num- 
ber of small-sized groups that are reliable (i.e. span a sin- 
gle object) [5]. Existing grouping schemes usually meet 
some but not all of these requirements.   For example, 
schemes that capture only meaningful structure with- 
out reasoning about scene geometry can produce groups 
that are unreliable such as the grouping of salient image 
contours described in [25].  In other grouping schemes, 
the weakness of the constraints used can lead to a large 
(potentially exponential) number of groups [13]. Other 
schemes that restrict the number of groups can either 
cause some relevant groups to be missed leading to false 
negatives during recognition [11] or cause the groups to 

become unreliable [3]. 

So the general problem of selection remains largely 
unsolved as it is still not obvious how to reliably char- 
acterize subsets of data features that will give clues that 
point to a single object. We have been involved in devel- 
oping a computational model of selection that proposes 
that selection can be achieved via an attention mecha- 
nism. Specifically, it is an attempt to build a computa- 
tional model of visual attentional selection in humans, 
and to propose it as a selection mechanism for recogni- 
tion. Towards this end, two modes of human attentional 
behavior, namely attracted-attention and pay-attention 
modes, have been isolated to serve as paradigms for 
data-driven and model-driven selection respectively. The 
attracted-attention mode of behavior is spontaneous and 
is commonly exhibited by an unbiased observer (i.e., 
with no a priori intentions) when some objects or some 
aspects of the scene attract his/her attention. The pay- 
attention mode is a more deliberate behavior exhibited 
by an observer looking at a scene with a priori goals 
(such as the task of recognizing an object, say) and hence 
paying attention to only those objects/aspects of a scene 
that are relevant to the goal. According to this model, 
therefore, data-driven selection can be achieved by iden- 
tifying regions in an image that attract attention (i.e., 
that are distinctive) with respect to some feature such 
as color or texture, while model-driven selection can be 
achieved by paying attention to the model features (i.e., 
using the model features to decide saliency of features 
in the image). While it is understandable that pay- 
ing attention to model features can help isolate areas 
in the image that could contain subsets of data features 
that are likely to contain a single object (or the specific 
model object in this case), it is not immediately appar- 
ent how locating salient regions is an appropriate way of 
performing data-driven selection. Such a choice is, how- 
ever, motivated by the observation that an object often 
stands out in a scene because of some distinctive features 
that are usually localized to some portion of the object. 
Therefore isolating distinctive regions is more likely to 
point to a single object, making such regions an appro- 
priate choice in the absence of any specific information 
about the model object. A number of other approaches 
have also suggested that selection, at least data-driven, 
can be performed based on some measure of saliency [24]. 

The above discussion indicates a framework for 
achieving data and model-driven selection. But how can 
salient regions be found for data-driven selection, and 
how can the object model affect the choice of salient re- 
gions for model-driven selection? In earlier work we had 
presented methods of selection based on color [27, 28] 
and texture [29]. There it was shown that the number 
of data features can be greatly reduced by such a selec- 
tion. But since the regions isolated were rather large, 
the groups contained a large number of features causing 
the number of matches between model and image fea- 
tures to be still considerably large. If features within 
such regions could be grouped further such that only a 
small number of features fall into a group, then by find- 
ing a correspondence between such small region groups 
on the model and image, the total number of combina- 



tions of model and image features can be greatly reduced. 
In this paper, we explore the use of a property called 
closely-spaced parallelism that is often exhibited by lines 
on objects, to perform data and model-driven selection. 
Specifically, we show how small-sized and reliable groups 
can be generated using this constraint of closely-spaced 
parallelism lines and how such groups can be used to 
perform data and model-driven selection. Even though 
grouping is still at the heart of a such a selection mecha- 
nism, we show that the use of closely-spaced parallelism 
as a constraint causes it to meet several of the desir- 
able requirements for recognition, albeit at the expense 
of an increase in the worst-case search complexity over 
conventional grouping. 

The rest of the paper is organized as follows. We 
first discuss the need for grouping data features into 
small-sized groups for the purposes of recognition. This 
gives us a set of requirements that must be met by any 
scheme for grouping data features. We then briefly re- 
view the existing grouping methods in the light of these 
requirements. Next, we present a method for group- 
ing line features that exploits the property of closely- 
spaced parallelism among lines. We then explore the use 
of line groups as a feature by itself for performing data 
and model-driven selection. In keeping with the general 
paradigm of attentional selection presented above, data- 
driven selection is achieved by selecting some salient line 
groups, while model-driven selection is achieved by uti- 
lizing the description of line groups on the model object. 
Next, we show how such line groups-based selection can 
be combined with other methods of selection based on 
cues such as color, to further reduce the search in recog- 
nition. Lastly, we present results that indicate the ac- 
tual improvement in performance of a recognition system 
that uses line groups-based selection. 

2    Role of Grouping in Model-based 
Recognition 

Region selection using color and texture as described in 
earlier work [27, 28, 29] reduced the search involved in 
recognition by removing a large number of data features 
from consideration. Even so, once a set of regions is 
selected, a large number of matches between features 
in corresponding model and image regions may have to 
be tried. Using the alignment method for recognition 
(in particular, the linear combination of views version of 
this method [31]) we know that at least four matching 
features must be found for alignment (and hence recog- 
nition). If there are M features (say, points) in a model 
region and N features in the corresponding image re- 
gion, then 0(M4N4) matches per pair of corresponding 
regions may have to be tried, in the worst case, with 
such region selection. For the typical number of fea- 
tures (M « 100, N « 300) found in color or texture 
regions, this is still a very large number of matches to 
be tried ( ss 1018). If the data features within such 
regions can be further grouped into some meaningful 
structures or groups consisting of a small number of fea- 
tures each, then the search can be reduced by pairing 
such groups, and trying combinations of features within 

matching groups, as before. Previous research has ex- 
plored the role of grouping in recognition for reducing 
the search in precisely this fashion [13, 3, 17, 9]. To see 
how grouping of features can reduce the combinatorics 
of search drastically, we reproduce here the analysis of 
grouping given in earlier work [13, 3]. 

Let us consider the case of grouping being performed 
both on the model and image features. Let Mg and Ng 

be the number of model and image groups respectively, 
and let m,- and n, be the number of features in the model 
group i and image group j. If the size of the model 
and image groups are identical, and each group contains 
features coming from a single object, then the number 
of matches that need to be tried are 0(^L\ J2f=i m<!) 
since all pairs of model and image groups may have to 
be tried and m,! accounts for all permutations of fea- 
ture matches within a pair of matching groups. Further, 
if the features in a group can be linearly ordered, the 

number of matches reduces to 0(Yli=\ J2j=i m>)- W ^ne 

number of features in the model and image groups are 
not identical or if not all the features in groups come 
from a single object, then assuming at least one image 
group contains at least 4 features of a model group, a so- 
lution for the pose of the model object can be obtained 
by trying, in the worst case, all matches of four features 
within each pair of image and model groups. The num- 
ber of matches that need to be tried in such-aase becomes 
0(rfi£5i"tfn}4!). 
For small-sized groups (say, about 5 features each), this 
is essentially 0(MgNg) or linear in the number of groups 
l 

From the above analysis, we see that in order to 
reduce the search involved in recognition, a grouping 
scheme must possess some desirable properties. Ideally, 
a grouping method must produce highly reliable (that is, 
groups coming from a single object) equal-sized groups 
in the model and image. If this is not possible, it must 
contain at least a sufficient number of features (four be- 
ing the minimum) coming from a single object to make 
recognition possible. When groups satisfy this "mini- 
mum reliability", the number of extraneous features in 
a group must be as small as possible. In other words, it 
is desirable to have small-sized groups, so that the com- 
plexity of search remains linear in the number of groups. 
Another requirement to keep the number of matches 
small is to lower the number of possible groups (to a low- 
order polynomial). The number of groups cannot, how- 
ever, be reduced by arbitrarily discarding groups as this 
could create unnecessary false negatives during recogni- 
tion. That is, it may cause an object to be not recognized 
because groups corresponding to the model groups were 
discarded. Finally, since grouping is a pre-processing 
step to recognition, the group generation process (i.e., 
the algorithm for assembling the groups) itself must be 
fast and simple. 

The above discussion suggests that one of the keys to 
making grouping useful for recognition is to group fea- 

1This ignores the effort required for verifying a match 
assuming it is the same for recognition with or without 
grouping. 



tures in an image based on constraints that capture some 
salient and easily detectable structures that point in turn 
to meaningful structures on objects in scenes. In this 
way, the number and size of groups can be kept small, 
since not all tuples of features will be meaningful, and 
being easily detectable, the groups can be generated by 
a fast and efficient algorithm. Finally, since such groups 
point to meaningful structures on objects in scenes, they 
tend to be more reliable. 

2.1    Approaches to grouping 

We now examine some of the previous work on group- 
ing in vision in the light of the above requirements for 
their use in recognition. We will focus here on group- 
ing of edge features, remarking on grouping methods for 
other data features only briefly. More extensive reviews 
of grouping are available elsewhere in literature [13], [17]. 

Grouping was initially studied in psychology, mainly 
as a perceptual phenomenon. There it was noticed that 
when we look at an edge image of a scene, we often pick 
up any structural information present in a collection of 
edges or lines. Figure 1 illustrates this with examples 
of line arrangements in which we can identify some per- 
ceptual structure. Early Gestalt psychologists demon- 
strated through a variety of examples that humans use 
cues such as simplicity, proximity, similarity, symmetry 
and familiarity for grouping features [33]. Their expla- 
nation for the perception of groups based on such cues 
seemed plausible but lacked a quantitative basis due to 
the difficulty in precisely defining concepts such as sim- 
plicity and familiarity. Later studies tried to make terms 
such as simplicity a little more concrete by using the con- 
cept of minimum entropy from information theory [10]. 
The explanations put forward by psychologists about 
this ability to group a collection of features based on 
constraints all seem to imply that it reflects an underly- 
ing knowledge of what makes a collection of edges come 
from a single object. In other words, the grouping pro- 
cess reflects an inherent bias towards collecting those 
edges that are likely to belong to a single object. 

While the work on grouping in psychology had con- 
centrated on observing it as a phenomenon and develop- 
ing explanations for it, the work on grouping in com- 
puter vision has focused more on ways of making it 
useful for computer vision. Towards this end, several 
roles of grouping have been envisaged. In the early 
work of Marr, for example, grouping was suggested as a 
way of abstracting information in the raw primal sketch 
derived from the image [18]. He suggested grouping 
based on constraints such as curvilinearity, parallelism, 
and collinear displacements. Later work developed tech- 
niques to perform grouping such as the use of the Hough 
transform to capture collinearity information in points 
[8]. Grouping was also suggested as a useful step in both 
geometric and symbolic methods of recognition. Lowe 
proposed grouping as a way of establishing good prim- 
itives for recognition [17]. Jacobs and Clemens showed 
the extent of search reduction possible using grouping 
as a pre-processing step in recognition [5]. The role of 
grouping in geometric methods of recognition was merely 
to organize the data features, while the actual recogni- 

tion was done by using the data features from the groups. 
The role of grouping in symbolic recognition methods, on 
the other hand, was to provide the groups themselves as 
high-level match primitives to be used directly for recog- 
nition using symbolic reasoning techniques. Early vision 
systems used grouping in this sense, such as ACRONYM 
in which edges were grouped into ribbons and the recog- 
nition of objects proceeded based on the ribbons and 
their topology [2]. More recently, grouping has been 
used for purposes of indexing into a library of objects 
in geometric methods of recognition [4], [15]. It has also 
been used for this purpose in symbolic methods of recog- 
nition to extract meaningful structures in scenes based 
on constraints of parallel and skew symmetry [26], [19] 
and proximity[7]. 

The role of grouping in extracting meaningful struc- 
tures in scenes has also been emphasized in grouping 
schemes based on region and contour features (rather 
than edge or point features). This can be seen in the 
work of Shashua and Ullman on the grouping of im- 
age contours to capture salient curves [25], of Dolan and 
Weiss on the grouping of curved lines using proximity 
[7], and of LeClerc on hierarchical grouping of regions 
based on the minimum description length principle [16]. 

A class of approaches in computer vision have at- 
tributed the tendency to group features to the ability 
of humans to recognize the non-accidental occurrence of 
the relation underlying the groups. That is, the degree 
to which a relation is unlikely to have arisen by an acci- 
dent of viewpoint, rather than the knowledge that they 
belong to a single object, is the motivation behind group- 
ing features based on that relation. This was concluded 
by Witkin and Tenenbaum [34] after observing that such 
non-accidentalness was used to interpret groups of fea- 
tures even when the ultimate interpretation of the groups 
was not known. They also pointed out that since such a 
relation was expected to remain stable over a large num- 
ber of viewpoints, it must reflect some meaningful struc- 
ture in the scene. Lowe extended the non-accidentalness 
argument behind grouping to identify the set of image 
relations that are unlikely to occur by an accident of 
viewpoint [17]. Using the assumption that the viewpoint 
of the camera is independent of the objects in the scene, 
he showed that only certain image relations, such as con- 
vexity and parallelism, are likely to remain stable over 
a large range of viewpoints. He also concluded that be- 
cause of this viewpoint in variance, the detection of such 
relations in an image implied that they were likely to 
be the projection of a meaningful and specific 3d struc- 
ture. Lowe showed that this property can make such 
groups useful for the recognition of three dimensional 
objects. For example, using the non-accidentalness of 
viewpoint, he showed that parallel lines in the image are 
most likely to come from parallel lines in space. So if the 
model object contained parallel lines, then this justifies 
the matching of (groups of) parallel lines in the image 
to (groups of) parallel lines on the model, thus making 
such groups useful primitives for recognition. 

Another class of approaches in computer vision ex- 
plored the same argument for grouping that was put 
forward by psychologists based on the likelihood of the 



(a) [][][][ 
(b) 

(c) 

Figure 1: Illustration of perceptual structure apparent in line arrangements, (a) A group of lines perceived as a 
collection of squares due to closure (or continuation), (b) Lines seen as crossing due to good continuation, (c) 
Bilateral symmetry evident from the group of lines shown. (Adapted from Figure 2-1 of [17]) 



grouped features coming from a single object. For exam- 
ple, in the early work of Roberts, vertices connected by 
straight edges were grouped using the rationale that con- 
nected vertices were likely to be part of the same object 
[22]. This argument was given a more quantitative basis 
by Jacobs who proposed that grouping of data features 
in an image should be based on a relation that points to 
the likelihood of such features coming from a single ob- 
ject [13]. Specifically, he used distance and orientation 
constraints to explore the convexity relation between a 
group of edges. By doing a statistical analysis of occlu- 
sions and merging of edges with background in images, 
he showed that it is unlikely for a randomly selected 
group of edges to form a convex polygon, thereby imply- 
ing that the detection of such a relation between edges 
pointed to their likelihood of coming from single objects. 
Other researchers that have used a similar argument for 
grouping are Bolles and Cain who used the proximity 
relation to groups features in their local feature focus 
method [1], Brooks who grouped edges forming ribbons 
or trapezoids [2], and Clemens who grouped edges en- 
closing open regions [3]. 

Let us now evaluate some of the existing schemes 
for grouping from the point of recognition.   Grouping 
schemes, such as that of Shashua and Ullrnan [25] for 
grouping image contours, that attempt to capture mean- 
ingful structures in scenes without reasoning about scene 
geometry, often produce groups that span wide areas 
of the image, making them unreliable for recognition. 
Other grouping schemes based on viewpoint invariance 
that use constraints or relations that are likely to hold 
over a wide range of viewpoints such as parallelism [17], 
or convexity[13], [11] also produce groups that attempt 
to capture meaningful structures in the scene. However, 
the ease with which such relations are detected in im- 
ages decides the number of groups generated as well as 
their size.   Since several nearby edges could satisfy re- 
lations such as parallelism and convexity, different com- 
bination of edges have to be explored by grouping algo- 
rithms leading to a very large number of groups and tak- 
ing time of equal complexity. For example, Huttenlocher 
grouped edges based on connectivity by considering all 
possible sequences of edges of length three (leading to 
0(N3) groups for N edges)[12]. Later work on grouping 
tried to generate a smaller number of groups by filtering 
some of the groups.   In Huttenlocher and Wayner [11] 
for example, a grouping algorithm was presented that 
works in 0(n logn) time and generates a linear number 
of convex edge groups. The filtering was done by using a 
cost function to rank neighbors of an edge and allowing 
only the least-cost neighbor to participate in a convexity 
relation. Although the number of groups are restricted 
by this method, it is not clear whether such decisions 
can be made on a purely local basis. Also, since there is 
no analysis of the kind of groups that will be missed, it 
is not clear that such groups do not cause a recognition 
system to make false negative identifications.  Another 
grouping scheme explored by Clemens also restricts the 
number of groups to be linear in the number of edges 
[3]. Here the groups are designated by open regions that 
are enclosed by a group of edges. Such open regions of 

the image were considered likely to come from a single 
object because a transition from one object to another 
almost always caused a change in intensity sufficient to 
produce an edge that splits a region. The grouping al- 
gorithm used assigns an edge to at most four regions 
thus ensuring that the number of groups remains lin- 
ear in the number of edges. Due to feature instabilities, 
imaging artifacts, etc. an open region is rarely bounded 
by edges forming a complete connected closure, causing 
such assignments of edges to 4 neighbors using purely 
local judgment to group together edges that do not nec- 
essarily come from the single object. Thus in the existing 
approaches to grouping, it appears that restricting the 
number of groups may either cause some relevant groups 
to be missed or may make the grouping scheme unreli- 
able, causing it to group features that don't necessarily 
come from a single object. 

3    Grouping Based on Closely-Spaced 
Parallelism 

We now present a grouping method that exploits the 
relation of closely-spaced parallelism commonly occur- 
ring between lines on objects, to produce groups that 
possess many of the desirable properties for purposes of 
recognition. Many commonly occurring objects in in- 
door scenes such as books, cups or tables possess some 
pattern-like structures that often attract our attention. 
Such structures usually contain groups of closely-spaced 
parallel lines of a few orientations. For example, printed 
letters on the surface of an object such as a book, or a 
bottle, and wooden texture on pieces of furniture such 
as a table contain groups of closely spaced parallel lines. 
Sometimes such parallel lines form texture-like patterns 
as on the bottle in Figure 2a, while in other cases they 
capture some interesting structures from parts of objects 
such as the parallel contours in the triangular block of 
Figure 2a. Even when they can be treated as textures 
we consider them as a separate cue since the property of 
parallelism they capture is of direct use in recognition as 
a grouping method2 

The groups of parallel lines we want to capture include 
cases of both explicit and implicit parallelism. Figure 2a 
shows a scene containing objects showing instances of 
both types of parallelism. The contour of the triangu- 
lar block has two explicitly parallel lines as can be seen 
from Figure 2b, while the letter texture on the bottle 
has implicit parallelism as can be seen from the group 
of parallel lines in Figure 2c where only the nearly hori- 
zontal lines of Figure 2b are highlighted. As we will see 
later, the projection of such patterns in images continue 
to show closely-spaced parallelism among the projected 
lines over a wide range of viewpoints. This makes it pos- 
sible to capture closely-spaced parallelism on objects by 

2Also, in the context of building the attentional selection 
model, while color and texture have been primary features 
being extracted directly from the intensity image, parallel- 
line groups serve as a secondary feature being extracted from 
the edges or line features. So treating them as a separate 
cue illustrates an implementation of the model of attentional 
selection possessing a feature hierarchy. 



(a) 

(b) 

(<•) 

Figure 2: Illustration of implicit and explicit closely-spaced parallelism on objects, (a) An image of a scene containing 
objects showing explicit and implicit parallelism, (b) Line segment image of (a). Note the parallelism explicit in the 
contour of the triangular block, (c) An image showing only the nearly horizontal lines in the image of (b). Note that 
the parallelism implicit in the letter texture on the bottle in (b) becomes explicit in this image. 
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examining such a relation between the edges (or lines) 
in their projections. Since it is rare that adjacent ob- 
ject regions in an image possess similarly-spaced paral- 
lel lines of similar orientation, the detection of closely- 
spaced parallel lines in images is also likely to point to 
single objects. Further, since not all edges in the image 
are likely to show closely-spaced parallelism, this could 
lead automatically to fewer groups. And for objects 
showing characteristic textural information that contains 
such closely-spaced parallel-lines, the groups can be use- 
ful clues that point to the identity of such objects. Also, 
when the spacing allowed between parallel lines is small, 
such groups capture compact areas in both the image 
and the object and contain fewer features in a group. 
Finally, as we will see later, such groups can be eas- 
ily found in images using a simple algorithm. Thus 
groups of closely-spaced parallel lines in images capture 
not only meaningful structures on objects in scenes but 
also possess the desirable properties required of a group- 
ing scheme for recognition. 

Grouping based on such parallelism, however, has the 
disadvantage that unlike in conventional grouping, a sin- 
gle pair of matching groups is not sufficient for recogni- 
tion. This is because recognition methods such as the 
linear combination of views-based alignment method re- 
quire at least 4 non-coplanar points for alignment. Since 
a group of parallel lines in space span a plane, the fea- 
tures such as points or lines derived from them are copla- 
nar, needing at least two matching pairs of groups to 
be found. However, since more than four corresponding 
features are needed in practice, other grouping schemes 
have also found the need for finding more than a pair of 
matching groups [13]. 

3.1     Closely-spaced parallelism constraint 

So far we have only loosely specified the property of 
closely-spaced parallelism and have given intuitive ar- 
guments about the advantages of grouping based on this 
relation. We now make the definition more precise to 
allow the generation of groups from line segments in an 
image based on this relation. Ideally, the structure in 
space we want to capture using the closely-spaced par- 
allelism constraint is a set of (3D) parallel line segments 
on an object with a given inter-line spacing. To see how 
such a structure appears in an image (i.e. in a projec- 
tion), we exploit some well-known results in descriptive 
geometry [14]. These results indicate that under ortho- 
graphic projection and scale (often used to approximate 
perspective projection), a parallel-line group in 3D al- 
ways projects to a group of parallel lines in the image 
under any view. In practice, because of the noise in the 
imaging process, and depending on the method used to 
obtain line segments from edges, such a group appears 
as a set of closely-spaced lines with slight skew between 
the lines but with the overall orientation of the group re- 
maining more or less uniform. When perspective effects 
are dominant, however, parallel lines in 3D appear as a 
set of converging lines. For most imaging distances, this 
convergence is slight, so that such lines have only a small 
amount of inter-line (as well as overall) skew. Thus 3D 
line segments on objects showing strict closely-spaced 

parallelism between them actually appear as groups of 
closely-spaced lines in image that are almost parallel (i.e. 
with slight inter-line as well as overall skew). However, 
we will refer to such groups in both the image and ob- 
ject as closely-spaced parallel-line groups (or in short as 
line groups) with the implication of strict parallelism be- 
tween lines in 3D and approximate parallelism between 
their projections. 

To precisely define such groups in an image, we begin 
with some terminology relating to 2d non-intersecting 
line segments. 

3.1.1    Terminology 
1. Overlapping lines: Two line segments are said to over- 
lap if the projection of at least one end point of one of 
the lines lies inside the other line segment. Figure 3a 
shows examples of overlapping and non-overlapping line 
segments. 

2. Across-the-line-distance: The across-the-line distance 
between two lines L\, Li whose end points are 
designated by pni,Pii2,Pi2i,Pi22 respectively, is de- 
fined as follows. Let S denote the set of pairs 
{(piu,Pm),(pm,Pi22),(Pii2,Pt2i),(Pn2,Pi22)}- Let 
dmin = min Mp,,p,)|V(p,-,p;) € S}, whe*e d(pi>Pj) is 
the euclidean distance between the points, of the pair 
(pi,Pj). Let (pr.Pj) be the pair in S that has this mini- 
mum distance dmin. Let L(pr) and L(p,) be the lengths 
of the projection of points pr and p, onto lines L2 and 
L\ respectively. Then the across-the-line distance dacro„ 
between lines L\ and Li is defined as 

a« — \ 
min{L(pr), L(p,)}   if L\ and Li are overlapping 
dmin otherwise 

(!) 
Figure 3b shows examples of some non-intersecting 

line segments and the across-the-line distance between 
them. 
3. Along-the-line-distance: The along-the-line distance 
dahng between two lines L\ and Li is defined as: 

*along -{ ™*W(dmin - L(Prn yj{dmin - L{p,Y)}   if Li a 
others 

(2) 
where the terms dmi„, L(pr), and L(p,) are as given in 
Definition 2. Figure 3c shows some non-intersecting line 
segments and the along-the-line distance between them. 

3.1.2    A closely-spaced parallel-line group 
A closely-spaced parallel-line group in the image, 

specified by the tuple 
< *acrosti*alongitlocal—orientitgloboi—orient >i 

is the largest group of non-intersecting line segments 
such that for each line in the group, there exists another 
line in the group obeying all of the following constraints: 

1. The across-the-line distance daero„ between the 
lines is no more than the threshold ta„oti. 

2. The along-the-line distance daiong between the lines 
is no more than the threshold taimg ■ 



Figure 3: Illustration of some of the terminology relating to 2D non-intersecting line segments, (a) The difference 
between overlapping (i) and non-overlapping (ii) line segments according to Definition-1 in the text, (b) Across- 
the-line distance shown for both overlapping (i) and non-overlapping (ii) line segments, (c) Along-the-line distance 
shown for both overlapping (i) and non-overlapping (ii) line segments. 



3. The orientation difference between the lines is no 
more than a threshold tioca\^oritni. 

Moreover the entire group must satisfy the condition 
that the maximum orientation change between any 
two lines in the group is no more than a threshold 
' global—orient ■ 

The above definition of closely-spaced parallelism al- 
lows for almost parallel lines to be grouped, which as 
we said above, is a more useful structure to capture 
in the image. Further, by allowing non-overlapping 
lines to be grouped, it can not only capture groups 
of non-overlapping parallel lines in space, but also al- 
lows some occlusions that cover portions of line seg- 
ments, to be handled. The constraint on global ori- 
entation change, tgi0bai-orient, is imposed to keep the 
entire group almost parallel since otherwise successive 
deviations in orientation between lines could lead to 
a group of fairly skewed lines. This also makes the 
above grouping constraint different from the one used 
earlier for assembling groups of parallel lines in a data- 
driven fashion [21]. Finally, the choice of the thresh- 
olds tacross,*along,tloeal—orienti*global—orient  dictates the 
kind of groups that will be generated. We will discuss 
their choice when using the groups to perform data and 
model-driven selection. 

3.2    Algorithm to generate the line groups 

We now present an algorithm to generate closely-spaced 
parallel line groups in an image for a given choice of 
tnreShOldS   lacro$3,talong>llocal—orient,  and tglobal—orient' 
It works by first extracting line segments from edges in 
an edge image using one of the standard algorithms for 
line-segment approximation [20]. The resulting line seg- 
ments are used to generate the groups as follows: 

1. Each line segment is initially kept in a separate 
group. 

2. For each line segment L, the following operations 
are done: 
(a) A rectangular neighborhood about L that is 
2*across in breadth and 2(taiong+l) in length, where 
/ is the length of the line, is scanned, and all lines 
that either pass through this neighborhood or have 
an end point in it are retained. 
(b) Among the lines obtained in step-2a, those 
that satisfy the local orientation change constraint 
Uocai-orient with L are retained. 
(c) A new group is formed by successively merging 
the enclosing groups of lines obtained after step 
2b with the enclosing group of L taking care to 
see that no enclosing group being added contains a 
line violating the tg}0bai-orient constraint with the 
currently created group. 

3.2.1    Analysis 
The grouping algorithm performs steps 1-2 using the 

union-find data structure to record and update infor- 
mation about line groups [6]. In this data structure, 
information is organized as a forest of trees. The es- 
sential information within a tree is summarized in its 
root. The basic operations that can be performed on this 

data structure are make-set (a) that creates a single 
node tree with element a, find (a) that finds the root of 
the tree containing o, and union(a,b) that merges the 
trees containing elements a and b. Using a technique 
called merging by rank with path compression [6], it is 
known that m operations of make-set take time O(m), of 
find take time 0{m) while m union operations take time 
0(mA(m, n)) where n is the number of elements in the 
data structure, and A(m, n) is the Ackerman's function. 
For most values of m and n, the function A(m, n) is al- 
most constant so that a single one of these operations 
can be done in constant amortized time. 

Using the union-find data structure, Step-1 requires n 
make-set operations for n line segments. For each line L, 
Step 2a requires all lines to be scanned requiring 0(n) 
time. Similarly Step 2b requires O(n) time, in the worst 
case, to examine all the retained lines. If the least orien- 
tation in a group is stored as part of the information in 
the roots of trees, then the constraint checking in Step 2c 
can be done by a simple find operation per line. Finally, 
the merging in Step 2c can be done by a union operation. 
Thus the entire step 2 can be done in time 0(n) per line 
with the result that the grouping algorithm itself runs in 
0(n2) worst-case time. 

3.2.2    Results 
We now illustrate the grouping algorithm with a few 

examples. Figure 4a shows the line segments obtained 
by doing a line segment approximation to the edges in 
the image of Figure 2a. The closely-spaced parallel line 
groups obtained using the grouping algorithm with a 
constraint specification of < 10,5,6,10 > are shown in 
Figures 4f-i. These groups are shown along four ma- 
jor orientations (vertical, horizontal, obtuse, and acute) 
for clarity. The individual groups are highlighted by 
drawing the convex hull of the end points of line seg- 
ments. The line segments that are grouped can be seen 
in the corresponding Figures 4b-e. Similarly, Figure 5 
shows another example of grouping performed by the al- 
gorithm. By using the algorithm on a number of edge 
images, the number of groups, their average size (num- 
ber of constituent lines) and the average area spanned 
by the groups were recorded. The results are shown in 
Table 1. From the table it can be seen that the number 
of groups is linear in the number of line segments, and 
the size of the line groups tends to be small. 

3.2.3    Discussion 
The number of groups generated by the grouping al- 

gorithm is in fact linear in the number of lines, since each 
line belongs to at most one group at the end of Step 2. 
If the constraints did not involve tgiobai-orient, it is clear 
that only a linear number of groups would have been pos- 
sible (recall that we are considering only the largest such 
groups). With the fourth constraint tsi0bai-orient added, 
the starting line as well as the order in which lines are 
examined determines the lines that ultimately belong to 
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Figure 4: Illustration of grouping based on closely-spaced parallelism and salient group detection, (a) Line segments 
to be grouped based on closely-spaced parallelism, (b)-(e) Line segments shown along four major orientations, namely, 
vertical, horizontal, obtuse, and acute orientations, (f)- (i) The line groups formed using the algorithm shown also 
along the respective major orientations for clarity. The thresholds used were ta„o,$ = 10,taimg = 5,tioeai-orient - 
6°,tgiobai-orient = 10°. (j) The 40 most salient groups among the line groups of (f) - (i) found using the sahency 
measure. Note that none of the salient groups span more than one object. 
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Figure 5: Illustration of grouping based on closely-spaced parallelism and salient group detection — Another example, 
(a) Line segments to be grouped based on closely-spaced parallelism, (b)-(e) Line segments shown along four major 
orientations, namely, vertical, horizontal, obtuse, and acute orientations, (f)- (i) The line groups formed using 
the algorithm shown also along the respective major orientations for clarity. The thresholds used were taeross = 
6,<aJ<ms = 5,tioeai-orient = 6°,tgiohai-orient = 10°. (j) The 40 most salient groups among the line groups of (f) - (i) 
found using the saliency measure. Note that only two of the salient groups span more than one object. 
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S.No. Image Num. Group Num. Avg. Group Max. Group Avg. Group 
Size Lines Constraints Groups Size Size Area 

1. 320 x 576 395 < 10,5,6,10 > 34 4 21 0.002 
2. 256 x 416 756 < 6,5,6,10 > 91 3.0 11 0.001 
3. 240 x 240 233 <5,0,6,10 > 22 3.1 6 0.0009 
4. 232 x 576 884 < 5,5,6,10 > 119 3.9 7 0.0008 
5. 200 x 492 1232 < 5,10,9,12 > 243 3.77 13 0.0028 
6. 224 x 416 316 <5,5,6,10 > 75 3 17 0.003 

Table 1: Characteristics of closely-spaced parallel line groups generated by the grouping algorithm. The average group 
area is normalized with respect to the image size. Only groups containing more than one line are considered here. 

a group as well as its size. In such.cases, more groups 
than are generated by the algorithm are possible. A case 
where this happens is shown in Figure 6. Figure 6a shows 
an arrangement of closely-spaced parallel lines in the im- 
age and Figure 6b shows the groups that will be gener- 
ated by the algorithm. Finally, Figure 6c shows some 
other groups that are possible from the arrangement in 
Figure 6a but are not generated by the algorithm. The 
groups generated by the algorithm correspond to a left 
to right, bottom to top scan of the line segments in the 
image. Such a scan often produces groups that resemble 
the groups we perceive using a frame of reference with 
the origin at the left hand bottom corner of the image. 

In general, if a large number of lines fall within the 
specified neighborhood of a line (in Step 2a), the pos- 
sible combinations of lines obeying all 4 constraints 
could become very large. The grouping algorithm de- 
scribed above generates only a subset of such groups, 
and in some sense, therefore, does a filtering operation. 
We mentioned earlier in Section 2.1 that grouping ap- 
proaches that filtered groups to keep them to a small 
number could cause a recognition system that subse- 
quently uses these groups to make unnecessary false 
negatives. We now show that this does not happen 
with the above grouping algorithm. For this, we no- 
tice that the closely-spaced line groups satisfying all 4 
Constraints  OI  \tacros3italong>tlocal—orient>tglobal—orient) 
are subsets of groups satisfying the first 3 constraints 
{tacro„;taiong,tiocai-orient} (called main groups here). 
The grouping algorithm generates only some of the pos- 
sible subsets, but such groups (called aggressive groups, 
henceforth) generate a cover of the main group. That 
is, every line of a main group belongs to some aggressive 
group. Suppose that the groups are fed to a recogni- 
tion system. Assuming an alignment style of recognition 
(such as the linear combination of views method [32]), we 
know that at least 4 matching features must be found to 
solve for the pose of the object. Since parallel line groups 
in the image that come from parallel lines in space rep- 
resent coplanar points, we may need two such groups to 
derive these features. Let us assume that each group 
provides two features and that the features are derivable 
from a single line in each of the groups (the end points 
of a line are the features, say). If there existed a pair of 
closely-spaced parallel-line groups in the image obeying 
all 4 constraints that were the correct pair of groups (i.e., 
they contained sufficient number of features to recognize 
the object) but were not generated by the grouping algo- 
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rithm, then a recognition system using the groups given 
by the algorithm could make false negatives. But since 
the aggressive groups form a cover, each correct group 
has partial overlap with at least one aggressive group 
suggesting that those pairs of aggressive groups would 
also be the correct groups containing sufficient features 
to recognize the object thus preventing a false negative 
identification. 

Thus the above grouping algorithm keeps the number 
of groups small by filtering possible groups, but at the 
same time, prevents unnecessary false negatives during 
recognition due to insufficient number of groups being 
produced. .'' 

4    Data-driven Selection using Line 
Groups 

We now discuss the use of closely-spaced parallel-line 
groups to perform data-driven selection. The goal of 
data-driven selection is to isolate regions in an image 
that are likely to come from a single object based on in- 
formation available in the image and some a priori knowl- 
edge about scenes. For a given choice of thresholds, not 
all the groups generated by the above algorithm repre- 
sent useful structures in the scene as can be seen from 
the examples in Figures 4 and 5. Some of the groups may 
span more than one object, while others come from spu- 
rious line segments, or scene clutter rather than objects 
of interest in the scene. For the purposes of recognition, 
it would be useful to order and consider only some of the 
more reliable ones from these groups. In keeping with 
our general paradigm of data-driven selection, we order 
the groups using a saliency measure and select a few of 
the salient groups. In this section, therefore, we describe 
a measure of saliency for the line groups and then discuss 
the utility of salient group-based selection in recognition. 

4.1    Saliency of parallel-line groups 

As in the development of color and texture region 
saliency, the focus in designing a measure of saliency 
of parallel-line groups will be on capturing the sensory 
component of distinctiveness. Thus those properties of 
lines that are commonly perceived and fairly general will 
be considered. The strategy for assembling the saliency 
measure is, as before, to record the factors affecting 
saliency and to combine them appropriately in a way 
that reflects their importance. Unlike in the case of color 
and texture saliency, however, the saliency measure for 



Figure 6: Example to illustrate some of the line groups that are not generated by the grouping algorithm, (a) 
An arrangement of closely-spaced parallel lines, (b) The groups generated by the algorithm shown within the two 
rectangular boxes. The asterisk mark indicates the starting line segment used to assemble the line groups, (c) 
Another set of groups possible from the arrangement of (a) that also obey all the four grouping constraints. Note the 
overlap between these groups and those generated by the grouping algorithm. 
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line groups is designed to emphasize the inherent relia- 
bility of groups more than the match with our perceptual 
judgment of their importance. 

4.1.1    Factors affecting saliency of line groups 

Among the properties of line-groups that are often ob- 
served are the length of the constituent lines, the region 
spanned by them, the number of constituent lines, and 
their overall orientation span. These properties of line 
groups were chosen as the factors affecting saliency using 
the following rationale: 

4.1.2    Weighting functions for factors affecting 
saliency 

To develop a measure of saliency for the line groups, 
each of the factors must be weighted to appropriately 
reflect their individual contributions in deciding the 
saliency of a group. The form of the weighting func- 
tion, in most cases, was derived using three criteria: It 
should (a) reflect the likelihood of a group coming from a 
single object, (b) it should be a smooth function so that 
discontinuities do not indicate an abrupt change in judg- 
ment, (c) it should be verifiable from statistical exper- 
iments. The weighting functions chosen for the factors 
are as follows: 

1. Length of constituent lines (L): The length of the 
constituent lines is chosen as a factor because groups 
with both very long or very short lines are undesirable 
from the point of recognition. Very long lines in an im- 
age are more likely to span multiple objects, while very 
short lines often tend to be due to spurious line seg- 
ments resulting from scene clutter or from a very fine 
line-segment approximation. Since a group has lines of 
varying length, the average length of lines in the group 
is taken as a measure of the length of the group. 

1. Length of constituent lines (I): Using the rationale 
given earlier, the weighting function is chosen to de- 
emphasize both very long and very short lines, while 
giving about equal importance to intermediate length 
lines. The decision of very short lines is made on an 
absolute basis, i.e., lines shorter than 5 pixels are con- 
sidered very short, while long lines are decided relative 
to the size of the image (by choosing the diagonal length 
in the image as the normalizing factor). The weighting 
function is as follows: 

2. Region span of a group (R): The region spanned by a 
line group can give indications of its reliability. A large 
region span often indicates a group spanning more than 
one object. We measure the region spanned by a closely- 
spaced parallel-line group by the area of the convex hull 
of the end points of the constituent lines. 

3. Number of constituent lines (N): Groups with a very 
large number of lines may not be entirely desirable from 
the point of recognition as they could contain a large 
number of features. Also, such groups could potentially 
span multiple objects. A sparse group (with one or two 
lines), on the other hand, may not indicate any mean- 
ingful structure. Either way, the number of constituent 
lines in a group can affect its saliency. 

4. Orientation span (6): A low orientation span indi- 
cates a greater amount of parallelism in a group. Since 
the aim in grouping lines here is to capture instances of 
closely-spaced parallelism on objects in a scene, groups 
exhibiting a greater degree of parallelism are more likely 
to indicate a meaningful structure. This also follows 
from the viewpoint invariance argument of Lowe that 
we mentioned in Section 2.1, namely, that a group of 
parallel lines is unlikely to have arisen from an accident 
of viewpoint, thereby making them more likely to come 
from either a single object or a single structure. The 
orientation span is measured by recording the maximum 
difference in orientation between lines in a group. 

ML) = 

where Ln = 

In(l-Ln) 

1 _ e-£»c3 

l_Qe-C3(Ln-h) 

0<L<h 
h<L and Ln < l2      (3) 
h < L„ < 1.0 

:, Lmax = diagonal length of the image, 
and the various thresholds are h = 5 (pixels), ^ = 0.4, 

Ci = -■ 
M(l-. ^7)   ,„ _ 6)nl0 _ 3/nlO 

> L2 —      ;„     ] <-3 —   i_|3 • 
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The form of the weighting function was derived by 
performing the following experiments. Groups were 
formed from several edge images using the grouping al- 
gorithm and the average line lengths of groups were 
recorded. The scenes of the images varied in complex- 
ity having different amounts of scene clutter, contained 
several objects, and showed illumination artifacts such 
as specularities, interreflections, etc. Figures 2a and 5a 
shows examples of some typical images tried. A his- 
togram of the number of groups with a given normalized 
length Ln (using 200 bins) was plotted. From this, the 
number groups that came from a single object and had 
normalized line length falling in a given bin were noted. 
The ratio of the number of groups of a given Ln coming 
from a single object to the total number of groups of that 
line length was taken to represent the weighting function 
fi(L). This ratio was plotted against Ln and smooth 
functions were fit to the resulting curve. These functions 
were described by the parameters ci,02,03. Finally, the 
thresholds /1, li were found from the breakpoints in this 
ratio curve. 

2. Region span of a group (R): The weighting function 
for the region span was chosen to emphasize small and 



compact groups. The form of the weighting function 
was derived by performing studies similar to the one de- 
scribed above. Here, the ratio of the number of groups 
with a given normalized region span that came from a 
single object to the total number of groups with the given 
span was taken to represent the weighting function. The 
weighting function derived from this ratio was: 

h{R) 
1 - e-C5" 
s2 - c6ln(l - R„ + r2) 
53e-=7(fi--rs) 

0 

0 < -Rr» < »"i 
ri < fi„ < r2 

ri < fin < r3 

»•3 < An < r4 

r4 < fi„ < 1.0 
(4) 

where Rn = -j^—, and Rmax = image size, ri = 0.1, 
r2 = 0.4, r3 = B!S, r4 = 0.75, sx = 0.8, s2 = 1.0, s3 = 
0.7, s< = IO-3 and c4 =-ÜÜIzIÜ Cs = -l^^,c6 = 

-4l+7/-r,VC7 = -£S?)-   Here a«aiD thC thresholds 

are chosen in a manner similar to the one described for 
the weighting function for the length of constituent lines. 

3. Number of constituent lines (N:) Since the average 
size of a group is small in the groups generated by the 
grouping algorithm, the weighting function is chosen to 
emphasize densely packed groups, i.e. groups with a 
larger number of constituent lines, as they often indicate 
some textural information. If such groups span a large 
area then they will be de-emphasized in the weighting 
function fi{R) for the region-span. The weighting func- 
tion chosen was: 

h{N) = 
N 

N„ (5) 

where N = number of constituent lines in a group, and 
Nmax = maximum number of lines in any line group in 
the given edge image. 

4. Orientation span (8): Using the rationale given ear- 
lier, the weighting function here is designed to empha- 
size groups showing a greater degree of parallelism, i.e., 
a smaller orientation span. To avoid unfair bias towards 
groups of single lines (which will have an orientation 
span of zero), we assign a small penalty toward single 
line groups. The resulting choice of function is: 

(6) 
f 0.1 $ = 0 and N = 1 

/4(e) = <   (1       <(i.o-c«o  )   otherwise 

where 0 is the orientation span, and ct\ =0.4. 

4.1.3    Saliency measure for a closely-spaced 
parallel-line group 

The saliency measure for a closely-spaced group of 
line segments is obtained by combining the weighting 
functions reflecting the contributions from the various 
factors. Since the factors record independent properties 
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of line groups, we chose to combine them linearly to give 
the following saliency measure: 

Saliency of a line group = fi(L)+f2(R)+f3{N)+fA(e) 
(7) 

4.1.4    Results 
We now illustrate the use of the saliency measure 

to judge the reliability of closely-spaced parallel-line 
groups. Figures 4f-i show the line groups found by the 
grouping algorithm in the image of Figure 4a. Among 
these, the 40 most salient groups found using the above 
saliency measure are shown in Figure 4j. As can be seen 
from the figure, all of the 40 salient groups come from sin- 
gle objects. Figure 5 shows another example in which the 
line groups generated are shown in Figures 5f-i and the 
top 40 salient groups among them are shown in Figure 5j. 
Here only two of the salient groups did not come from 
single objects. Table 2 shows the results of performing 
saliency experiments on a number of images whose aver- 
age complexity is indicated by the number of constituent 
line segments listed in the table. Here, the last column 
lists the percentage of unreliable groups in the top 100 
salient groups found using the saliency measure. From 
these studies we conclude that the saliency measure cap- 
tures reliable groups and can, therefore, he useful in a 
data-driven selection mechanism for recognition. 

In the discussion so far, we have not analyzed the 
extent to which the groups selected by the saliency mea- 
sure match our perceptual judgment of the importance 
of such groups. We chose not to emphasize this aspect 
for several reasons. First, in an edge image, other rela- 
tions in addition to closely-spaced parallelism, may exist 
between lines. For example, long smooth curves may 
be more salient than parallel-line groups in an edge im- 
age. For comparing the performance of the saliency mea- 
sure, the subjects should be made to look at only closely- 
spaced line groups and ignore other cues for grouping, a 
task difficult to achieve in practice. Even if scenes show- 
ing only instances of closely-spaced parallelism were ex- 
amined, there is the additional problem due to the group- 
ing algorithm generating only a subset of the possible 
groups. Thus not all the groups perceived by a subject 
may be generated and this affects the groups selected by 
the saliency measure. Finally, perceptual judgments may 
be based on a collection of groups of different orientation 
(this could indicate groups of curves, for example), and 
this is not considered by the saliency measure. 

4.2    Use of salient line groups-based selection 
in recognition 

Data driven selection based on salient line groups is pri- 
marily useful when the object of interest has at least 
one parallel-line group that appears among the selected 
salient line groups. In such cases, the search for data 
features that match model features can be restricted to 
salient groups thus avoiding needless search in other ar- 
eas of the image. In order for a model group to be found 
among the salient line groups, however, it should first 
be generated by the grouping algorithm. That is.'the 
choice of the four constraints characterizing an image 



S.No. Image 
Size 

Num. 
Lines 

Group 
Constraints 

Num. 
Groups 

Avg. Salient 
Group Size 

Avg. Salient 
Group Area 

% Unreliable 
Groups 

1. 
2. 
3. 
4. 
4. 

320 x 576 
256 x 416 
224 x 416 
200 x 492 
232 x 576 

395 
756 
316 
1232 
884 

< 10,5,6,10 > 
< 6,5,6,10> 
<5,5,6,10> 
< 5,10,9,12 > 
<5,5,6,10> 

219 
382 
207 
552 
454 

6 
8 
6 
4.25 
5.3 

0.009 
0.006 
0.008 
0.003 
0.004 

1 
2 
7 
3 
6 

Table 2:  Characteristics of salient closely-spaced line groups ranked by the saliency measure described in text.  In 
each case, the top 100 salient groups are considered. The number of groups listed here include single line groups. 

group should be such that a model group, if it exists in 
the image, can be captured by these constraints. Since 
no specific knowledge of model objects can be used in 
data-driven selection, the thresholds can be set based on 
some rough a priori knowledge about expected objects 
in scenes, the distances at which they are imaged, and 
some general knowledge about the parameters of the 3D 
structures that are meant to be captured in line groups 
in the images of such scenes. Among the thresholds, the 
local and global orientation thresholds, t\0Cai-orient and 
tgiobai-oricnt, are essentially independent of the objects 
in the library, and can be chosen based on an analysis of 
the imaging noise and the noise in line-segment approx- 
imation.   Since a group captures almost parallel lines, 
there is not much leeway in their choice, in that they 
can be only low values. We chose to model this noise by 
allowing 5-7 degree skew in between lines (tioeal-orient) 
and an overall skew (tgi0bai-orient) of 10 degrees.   The 
values of taer0t» and taiong however, have a major ef- 
fect on the lines that are ultimately grouped, and can- 
not in general, be chosen independent of objects in the 
library.   Larger values of these thresholds allow some- 
what widely-spaced parallelism to be captured, such as 
the parallelism inherent in the contour of the triangular 
block in Figure 2b. However, this would also decrease the 
reliability of the groups, as it allows lines belonging to 
separate objects to be grouped. Since our aim (at least 
in data-driven selection) is to capture letter and wooden 
texture occurring on objects in indoor scenes, we found 
that for the distances at which the objects are typically 
imaged, an interline separation (taw, taiong) of 5 to 10 
pixels is sufficient for capturing most such parallel-line 
groups in images.   Better methods for choosing these 
thresholds, could be devised, however. 

4.2.1    Search reduction using salient line groups 

We now estimate the search reduction that can be 
achieved by using salient-line groups-based data-driven 
selection. Following the analysis of the number of 
matches using grouping given in Section 2, if only S 
salient groups are retained for Af,- image groups, then the 
number of matches to be tried using the 4-point align- 
ment scheme of recognition is 0(52,J1 J2j=i "i4n44!) 
where mt- and rij are the number of features in the model 
and the selected salient image groups, respectively. To 
estimate the number of matches using such salient line 
groups, we chose a few model objects exhibiting closely- 
spaced parallelism between lines on the object, generated 
line groups using the grouping algorithm and retained 
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a few of the groups. By placing these objects in var- 
ious scenes, and using the grouping algorithm and the 
saliency measure, we retained a few (about 40) salient 
line groups in the images of these scenes. The number 
of features (i.e. the end points of line segments) in both 
model and data groups were recorded. The number of 
matches with salient groups-based selection was found 
using the above formula. For purposes of comparison, 
the number of matches without any grouping was also 
computed using the formula 0(M47V4) where M and N 
are the total number of features found in all the model 
and data line groups. The results are summarized in Ta- 
ble 3. As can be seen from the table, the search is always 
considerably lower when salient groups-based selection is 
done prior to recognition. The number of matches with 
this type of selection scheme can still be large, however, 
as all pairings of model and salient image groups are 
tried. Also, some of the salient groups are large in size 
thus increasing the number of matches that need to be 
tried within a pair of groups. 

5    Model-driven Selection using Line 
Groups 

So far we have considered the use of closely-spaced par- 
allel line groups for data-driven selection which required 
the object of interest to have a salient line group. Fur- 
ther, it was assumed that such a group could be detected 
by the use of some default threshold values for the con- 
straints characterizing closely-spaced line groups. This 
will not be of much help when the object of interest has 
closely-spaced parallel line groups but they are either not 
salient or cannot be captured using the default thresh- 
olds. In such cases, the description of the line groups 
present on the model object can be used to perform selec- 
tion. We now describe one such line groups-based model- 
driven selection mechanism. The approach adopted here 
is to selectively generate line groups in the image based 
on the description of closely-spaced parallel line groups 
on the model object. Thus the group generation pro- 
cess is constrained here so that only the likely matching 
groups are generated. Once the candidate matching line 
groups in the image are obtained, recognition can pro- 
ceed by examining pairs of model and image groups as 
usual. 

The criteria developed for a model-driven selection 
mechanism in the earlier work [28] are also relevant to 
line groups-based model-driven selection. That is. it 
must be sufficiently selective to avoid considering ob- 



S.No M N Mg Avg. m, Group 
Constraints 

Avg. rij Num. Matches 
No Selection Data-driven 

Selection 
1. 466 1768 9 6 < 5,5,6,10 > 12 1.88x10" ö.lxlO11 

2. 140 1768 10 4 < 10,5,6,10 > 12 1.49xl020 l.OxlO11 

3. 140 2464 10 4 < 10,5,6,10 > 10 5.6xl020 4.66xl010 

4. 358 1453 8 16 <2,2,6,10> 18 2.98xl021 1.38xl014 

5. 130 790 5 23 < 10,5,6,10 > 12 4.38xl018 4.46xl013 

Table 3: Estimated search reduction using salient line groups-based selection.   The terms M, N, 
explained in text. Here Ng = 40, i.e., the top 40 salient groups are retained for selection. 

M, g, m,-, Jij are as 

viously impossible matches, but at the same time, be 
sufficiently flexible to take into account the various prob- 
lems in imaging that may cause a model line group in an 
image to appear different from its original description. 
The object may appear different in a scene because it 
has undergone pose changes, or because it is occluded, 
or because illumination changes as well as artifacts in the 
scene such as specularities, interreflections have altered 
the appearance of the object. These changes (called ob- 
servation conditions, henceforth) can also alter the ap- 
pearance of the line groups on the model object. We 
first examine, therefore, the effects of these changes on 
the model line groups. This will then be used to design 
a description of model line groups as well as a strategy 
for generating matching line groups in the image. 

5.1    Effect of observation conditions on a model 
line group 

Consider a closely-spaced parallel (3D) line group on 
a model object. It can be specified by a tuple < 
tzd-acTt>»,Hd-aiong > with the following interpretation: 
Between any two consecutive parallel lines in the model 
3D group, the across-the-line distance dzd-acrou is no 

more than the threshold tzd-aero»» and the along-the- 
line distance dzd-along is no more than the threshold 
tzd-aiong- The distances dzd-acroi* and dzd-aiong for 
parallel lines in 3D are defined in a way analogous to that 
of daerosa and daionS given in Section 3,1.1 . We now 
analyze the effect of observation conditions on the ap- 
pearance of such 3D line groups on model objects when 
they placed in a scene. 

Pose changes: If the allowed transformation of the model 
object is restricted to a 3D affine transformation, then 
under orthographic projection and scale (to approximate 
perspective projection) and assuming no imaging noise 
and no errors in line segment approximation, it is known 
that closely-spaced parallel 3D line groups project to a 
set of closely-spaced parallel lines in the image [30]4. 

3The distance dsd-acro.j is simply the distance between 
two consecutive parallel lines defined as the length of pro- 
jection of the end point of one 3D line on the other. The 
along-the-line distance dzd-aiong is as defined for 2d-lines ex- 
cept that the distance dmtn, L(pT), and L(p,) are distances 
between points in 3D. 

4 If the transformation takes some of the object out of view, 
then this can be treated as the case when some projected 
parallel lines coincide. 

Further, the order of the lines in the group is preserved, 
although the resulting orientation of the parallel lines 
in the image can be arbitrary. The inter-line spacing 
dacrott and daiong between the projected lines will, how- 
ever, be different from the inter-line spacing dzd-acrou 
and dzd-aiong between the corresponding 3D lines. If 
no scale change has occurred during the transforma- 
tion, then the spacing between the projected parallel 
lines in the image can only decrease. This is because 
daerof forms a side of a right triangle whose hypotenuse 
is the orthographic projection of the inter-line spacing 
dzd-acrott (as shown in Figure 7), and will always be 
less than or equal to dzd-acro» • Using 'a similar ar- 
gument, we can show that the along-the-line spacing in 
the image daimg is less than or equal to dzd-aimg- If the 
transformation includes scale changes, then the inter- 
line spacing between parallel lines varies proportional 
to the scale. That is, for a scale change s (s > 1.0 or 
< 1.0) we have daero>, < s * dzd-aerot» and similarly 
daiong < s * dzd-aero$i ■ Thus the effect of pose changes 
is to vary the inter-line spacing between lines while still 
maintaining the property of parallelism. 

Occlusions: The most common effect of occlusions is to 
corrupt the projected model line group. That is, de- 
pending on the geometry of the occlusion, some lines in 
the group may either partially or totally disappear. But 
unless a group is completely occluded, the visible lines 
of the group maintain the same relative ordering and the 
inter-line spacing is dictated by the pose changes under- 
gone by the model. In rare cases, when the occluding 
object has similar closely-spaced parallel line groups, it 
may cause the two groups to be merged, and may even af- 
fect the inter-line spacing of the model line group. Thus 
the effect of occlusions on a model line group is mainly 
to change the number of constituent lines in the model 
groups, and in rare cases to even alter the inter-line spac- 
ing in the groups. 

Illumination changes and other imaging artifacts: 
When the wavelength characteristics of the light source 
illuminating the scene is different from the one illumi- 
nating the model object, it may cause a change in the 
apparent color of the object's surface. But since we are 
looking at an edge image to generate the groups, the 
edges tend to remain more or less stable.   When the 
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5 This is also true when perspective projection is approxi- 
mated by orthographic projection and scale. 



(xuyhz,) 
3D parallel lines 

I 

1 

I '      I' 
I '      /     ' 

I I 

I 
I 

I 
,(zi,yi) 

/ 

c   b' {X2,m) 

Projected lines 

Image Plane 

Figure 7: Illustration to show thai the distance between the projections of 3D parallel lines is less than or equal to the 
3D distance between the tines. The projection of the 3d distance rfsd-aeroi» (line ab) is given by the line a 6 . The 
length of a b is< length of ab since ab ~ <J(xi — X2)2 + (yi — gft)2 + (21 — z?)2 anda'b' = ^(xi —12)2 + {yi — j/2)2. 
The distance between the projected lines given by a c, is < a b by the hypotenuse of a right triangle rule. 
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light source location is changed, however, then depend- 
ing on the position of the 3D parallel line groups relative 
to the light source, lines in the projected group may be 
either partially or totally hidden in shadow. Further, if 
the surface of the object is specular, then specularities 
occurring in the region of the line group may cause the 
group to be corrupted by the partial or total masking of 
the lines in the group. Finally, interreflections can cause 
spurious line segments to appear as part of the model 
line group depending on the pattern on the object that 
is being reflected from the model's surface. Thus the 
effect of illumination changes is similar to occlusions in 
that both the number of constituent lines and the inter- 
line spacing in the model groups may be changed. 

5.2    Model line group description 

We now develop a description of the model line groups 
taking into account the effect of the observation con- 
ditions. From the above analysis, we know that a 
closely-spaced strictly parallel line group on the model 
specified by < t^d-acrossMd-aiong > also occurs as 
a group of parallel lines in an image with an inter- 
line spacing that is decided by the scale change in- 
volved in the undergone transformation. By restrict- 
ing the scale changes to lie between < si, S2 > (with 
s\ <= 1.0 and S2 > 1.0), the variation in the inter- 
line spacing dacroai that can be handled for any model 
line group appearing in any image can be restricted to 
lie in the range [si * t3d-across, «2 * hd-across] and simi- 
larly, the spacing daiong to lie between [si*hd-along, «2* 
Hd-aiong]- So far, the effect of imaging noise and 
errors in line segment approximation were not taken 
into account. As we remarked earlier, their effect is 
to cause the lines in the model group to be slightly 
skewed in the image. The thresholds tm-iocai-orient 
and tm-global-orient can be used to specify the toler- 
able inter-line skew and the overall skew in the line 
group. The resulting description of a model line group 
as it appears in any image can be given by the tuple < 
'3d—across, '3d— along, tm—local—orient, tm—global—orient, ^i, S2 ^- 
Different line groups on the model will differ in the 
first two terms (as the thresholds tiOCai-orient and 
tglobal-orient are independent of the line group), and the 
scale changes are specified with respect to the model ob- 
ject. 

To generate candidate line groups in a given image 
using the above model description, however, the inter- 
line spacing and the tolerable scale changes must be ex- 
pressed in terms of pixel spacing. For this, the distance 
at which the model is imaged for building the general 
model description can be used as the reference distance. 
That is, the pixel spacing corresponding to hd-across 
and tad-along can be taken to be the one existing between 
the projected lines in the image when the model is placed 
at the reference distance and oriented in such a way 
that the model line group is parallel to the image plane. 
By moving the object closer or farther than the refer- 
ence distance by the scale factors si and S2 respectively, 
the corresponding change in the pixel spacing can be 
recorded. If *m-2d-aero«j and tm-2d-aiong represent the 
pixel spacing corresponding to Ud-acro» and t3d-aiong ,q 

respectively, and pi and p2 represent the change in pixel 
spacing corresponding to the scale changes si and s?, 
then the description of the model line group that can be 
used to generate the line groups in the image becomes < 
tm- 2d- across , tm—2d—along, tm-local-orient, *m- global- orient > Pi, V2 *Z 

5.3    Selective generation of matching line 
groups 

We now present an algorithm for selectively generating 
line groups in the image that match a given model line 
group description. Since the model description places a 
bound on the tolerable scale and pose changes, the basic 
strategy is to generate line groups with successively in- 
creasing inter-line (both dacroas and daiong) spacing un- 
til the upper bound specified in the model description is 
reached. That is, given a model line group description < 
'm-2d— across , 'm—2d— along, tm—local—orient, tm—global—orient, Pl,P2 5 
the maximum across-the-line spacing allowed between 
the lines varies from tm-2d-across — Pi to tm-2d-across + 
P2 (and similarly for the along-the-line spacing). The 
matching groups are generated by hypothesizing a 
value of spacing between the lines lying in the above 
range and generating all groups with inter-line sepa- 
ration specified by that value. In particular, succes- 
sive integer pixel spacing from tm-2d-across - P\ to 
tm-2d-across +P2 are used to generate5 the groups. 
Such groups, called augmented closely-spaced paral- 
lel  line  groups,   can   be   specified   by   the   tuple   < 
tacross — low > tacross, talong—low , talong, tlocal-orient, 'global-orient > 
with the following interpretation: It is the largest group 
of non-intersecting line segments such that for each line 
in the group, there exists no line in the group such that 
^across ^ tacross—low  and daiong *■* taipng—low   ana tUere 
exists at least one line in the group obeying the following 
constraints: 

1. The across-the-line distance dacrosa 

lines is such that tacross-iow < da„os 
the between 

S tacross- 

2. The along-the-line distance daiong between the lines 
is such that talong-low < daiong < talong- 

3. The orientation difference between the lines is no 
more than a threshold t/oca/_ortent. 

and the entire group satisfies the assumption that the 
maximum orientation change between any two lines in 
the group is no more than a threshold tgi0bai-orient- 

If the observation conditions include only pose 
changes, and if all the lines in a model group are equi- 
spaced, then the model group appearing in the image 
(the visible part of it, that is) is bound to be present in 
one such augmented groups because its consecutive lines 
would exhibit an inter-line spacing within the specified 
range. In the presence of occlusions and other observa- 
tion conditions, and when the inter-line spacing in the 
model group is not uniform, the model group can still 
be captured in the augmented groups, albeit in a frag- 
mented form. That is, the model group may be par- 
titioned (and possibly merged with adjacent lines) into 
several augmented groups. But as long as two adjacent 
lines in the model group are visible in the image, they 
can still be captured in one of the augmented groups 



and this should, in theory, be sufficient for recognition 
(as the two line end points can provide four features). 

5.3.1    Algorithm for generating augmented line 
groups 

The algorithm for selectively generating the groups 
satisfying a model description < 
*m—2d— acrosst *m—2d— along i*m—local—orient> 'm—global— orient > 
proceeds by first generat- 
ing the line group < tm-2d-across - Pl,tm-2d-along — 
Pl,tm-!ocal-orient,tm-global-orient > Using the group- 
ing algorithm of Section 3.2. This can capture model 
groups that have unequal inter-line separation in the 
case of the model object undergoing pose change spec- 
ified by the lower limit of tm-2d-across — Pi- Then 
augmented closely-spaced line groups specified by < 
tacross>'across' *along''along' '■local-orient, 'global-orient    > 
are successively generated using a modified version of 
the grouping algorithm of Section 3.2 as follows: 

1. Let t°acro,s   =  tm-2d-across - Pi  and t°along   = 
tm—2d—along      Pi- 

2. For i = 1 to p2 - pi do 

• Let 4cro„ = 1 + *: 
t> »-1 
along' 

across-    an(^ '''along   —   1 + 

• The grouping algorithm of Section 3.2 is ap- 
plied to the line segments with the following 
modifications to Steps 2a and 2c: 

— In Step 2a, an annulus of neighborhood 
lying between the rectangles 2taCT

r
0SS A 

2(*a7«J,, + 0  and * across * 2(ffloB, + 0- 
where / is the length of the line, is scanned 
and all lines passing through this annulus 
but not through the inner rectangle are 
retained. 

- In Step 2c, in addition to checking for 
im-global-orient, each enclosing group be- 
ing merged with the current group is 
checked for violations against the annu- 
lus neighborhood constraint mentioned 
above. 

5.3.2    Analysis 
The above algorithm makes (p2 — Pi) passes over the 

line segments in generating the matching groups for each 
model line group. However, the total number of match- 
ing groups generated is still linear in the number of line 
segments since each line can belong to at most (p2 — Pi) 
groups, one for each line lying in the annulus of neighbor- 
hood between the outer and inner rectangles of dimen- 
sions 2ti,-J0S, x 2(ta^ng + /) and 2t\eross x 2{1>along + /). 
The above procedure can be repeated for generating 
matching groups for each model group separately. Alter- 
natively, the allowable inter-line spacings for all model 
line groups can be pooled together to form ranges of 
pixel spacing for all the model groups, and the search 
for matching groups can be done for each such range 
using the above algorithm. The time to generate the 
augmented line groups for an iteration i is still 0(n2) 
(n is the number of line segments) since the grouping 
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algorithm is the same as before, and Step 2c examines 
each pair of line segments at most once. For the allowed 
scale changes, the range (p2 ~Pi) is small enough so that 
the entire operation of selective group generation can be 
done in 0(kn2) time, where k <C n is a constant repre- 
senting the number of passes over the line segments. 

Pl,P2 > 
An Example 

We now illustrate model-driven selection using 
parallel-line groups with an example. Figure 8 shows 
model line groups being used to perform selection. Here 
the parallel-lines on the ladder part of the toy fire truck 
serve as the model line groups and are specified by the 
constraints < 5,0,6,10,3,0 > implying that the allow- 
able scale changes are from a maximum across-the-line 
spacing of (5-3 =) 2 pixels up to 5 pixels (in other 
words, allowing the object to be imaged farther than 
it is in the model description). Here no variation is al- 
lowed in the along-the-line spacing as the model lines 
all overlap (i.e. have tm-2d-aiong = 0). The model-line 
groups with the given specification are shown in Fig- 
ure 8b. Figure 8c shows (an edge-image of) a scene in 
which the model object appears at a different orienta- 
tion and has a portion of it occluded. Figures 8d-g show 
the matching augmented closely-spaced line groups ob- 
tained using successively increasing line-spacing as spec- 
ified by the range < 0,2,0,0,6,10 >, < 2,3] 0,0,6,10 >, 
< 3,4,0,0,6,10 >, and < 4,5,0,0,6,10 >, respectively. 
These matches to the indicated model line groups are 
shown collectively in Figure 8h. As can be seen from the 
figure most of the model line groups are captured in the 
matching groups, although there is evidence of fragmen- 
tation in two of the groups marked 1 and 2 as shown in 
Figure 8b. 

5.3.3    Discussion 

Model-driven selection using the above algorithm gen- 
erates enough candidate match groups for a model line 
group to avoid false negatives under most observation 
conditions. Further, by requiring the groups to have a 
minimum inter-line spacing, it avoids generating unnec- 
essary false positive matches to model line groups. This 
can easily happen if a simpler strategy for group genera- 
tion were used such as generating ordinary (rather than 
augmented) closely-spaced parallel line groups by suc- 
cessively increasing the line spacing from t^d-across — P\ 
to t2d-across + P2- Such a scheme would create suc- 
cessively bigger groups (since a group with small line 
spacing would always satisfy the constraint of a bigger 
line spacing) that are often more unreliable and unlikely 
matches to model groups. 

5.4    Search reduction using model-driven line 
grouping 

The model-driven selection mechanism using line groups 
described above identifies candidate groups in the image 
that could be potential matches for model line groups 
under some allowable transformation and taking into ac- 
count the effect of occlusions, illumination changes, etc. 
These matching model and image line groups can then 
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Figure 8: Illustration of line-groups-based model-driven selection, (a) Edge image of a model object showing instances 
of closely-spaced parallelism between lines, (b) Some of the line groups extracted using the grouping algorithm using 
the constraints oftaero„ = 5,tai<mg = 0,tjOea/-or«ent = 6,tgiobai-orient = 10. (c) An edge image of a scene in which 
the model object appears, (d) - (g) Augmented closely-spaced line groups generated using the description of the model 
line groups shown in (b). (h) The line groups in the image that are possible matches to the model line groups of (b) 
under the allowed scale and pose changes. 
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be given to a recognition system that will isolate fea- 
tures from the line groups to actually solve for the pose 
of the model object. To see the search reduction possi- 
ble with model-driven selection, let Mg model line groups 
be used to perform model-driven grouping. Let the total 
number of matching groups be Ng with Jb,- image groups 
matching a model group i. Letting (i,j) represent a 
match between model group i and image group j, and 
letting (m,-, n;) stand for the number of features in the 
matching groups, the number of matches that may have 
to be tried to align the model object with the image 

is OCEfL'i E*=i m*nj4-)- To estimate the search re- 
duction due to model-driven grouping, we selected some 
model objects (views of them, that is) possessing closely- 
spaced parallel lines on the surface, generated and re- 
tained some line groups, and recorded their specifications 
as \l2d— across, *2d-along i*local—orients tglobal—orient J-    "® 
then used scale bounds of «i = 0.5 and 52 = 2.0 (this 
allows objects in the scenes to be imaged at half to 
twice the distance at which their model descriptions were 
recorded) to complete the model line group descriptions. 
By placing these objects in scenes containing clutter, 
and allowing partial occlusions and illumination changes, 
we ran the selective group generation algorithm of Sec- 
tion 5.3.1 to record the matching image line groups for 
model line groups. The end points of line segments were 
considered as features to be used for recognition, and 
the number of features in both the model and image line 
groups were recorded. These experiments gave the val- 
ues for Mg,Ng,mi,nj,ki in the above formula. Table 4 
shows the results of these studies, with column 10 show- 
ing the number of matches using model-driven group- 
ing evaluated using the above formula. The number of 
matches that would be required without grouping is also 
shown in the table for comparison. As can be seen, the 
number of matches is far less with model-driven group- 
ing. To get an estimate of the actual search reduction as 
well as the number of false positives and negatives due 
to model-driven grouping, however, the grouping mech- 
anism should be integrated with an actual recognition 
system and its performance evaluated. The results of 
such experiments will be discussed in a later section. 

Even with model-driven grouping, the number of 
matches when considered on an absolute basis, is still 
very large. This can again be attributed to the large 
number of matches ib,- for model line groups, and to the 
sometimes large size of the matching groups. To han- 
dle scale changes, large inter-line spacing values have to 
be examined for group generation, unlike in the case of 
data-driven selection. This may cause some of the groups 
to be unreliable or large-sized because of merging across 
objects. Both these problems can be alleviated if model- 
driven grouping is used in conjunction with prior region 
selection done using more reliable cues such as color and 
texture. One such method of combining grouping with 
prior selection is discussed in the next section. 
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6    Line Grouping in Conjunction with 
Prior Region Selection 

So far we have examined grouping of line segments based 
on the constraint of closely-spaced parallelism as an in- 
dependent selection mechanism. But our original mo- 
tivation for grouping lines was to organize the features 
within prior selected color or texture regions into small 
groups, primarily for reducing the search in recognition. 
We now explore the use of line grouping within regions 
that are selected a priori based on cues such as color and 
texture. 

Data or model-driven selection using line groups can 
be easily achieved within previously selected regions 
by modifying the grouping algorithms of Sections 3.2 
and 5.3.1 to assemble lines obeying an additional con- 
straint of all lying within the selected regions. This not 
only restricts the number of groups generated in the im- 
age but also their size, by preventing the lines belong- 
ing to adjacent objects from being merged, thus making 
such groups more reliable. Moreover, when model-driven 
grouping is done within prior selected regions, an addi- 
tional constraint is provided by the enclosing regions and 
restricts the possible matches to model line groups even 
further. For example, when the regions are prior selected 
based on model color regions, then as shown in [27], a 
correspondence between model and selected image color 
regions is also established. The search for image line 
groups matching a model line group, therefore, can be 
restricted to color regions in the image that correspond 
to the model color regions spanned by the model line 
group. 

To estimate the search reduction using line group- 
ing in conjunction with prior region selection, we per- 
formed experiments in which model-driven line groups 
were generated within model color regions. The informa- 
tion about color regions spanned by a model line group 
was used as an additional constraint in finding match- 
ing image line groups. An example of such restricted 
model-driven selection using line groups is indicated in 
Figure 9 and Figure 10. Figure 9 shows the result of 
color-based selection as described in [27]. Figure 9a and 
b show two views of a model object used to construct 
its 3-dimensional description. Figure 9c shows the re- 
gion adjacecny graph describing the color regions in the 
model object using the color region segmentation algo- 
rithm described in [28]. The result of color-based region 
selection using the model object description of Figure 
9c in the scene of Figure 9d is shown in Figure 9e. 
Next, Figure 10 shows the result of line-groups-based 
selection within the prior selected regions in the scene of 
Figure 9d. The model group specification is the same 
as in Figure. 8, namely, < 5,0,6,10,3,0 >. Figure lOd 
shows the regions isolated in the image using color-based 
model-driven selection. Figure lOe-h show the match- 
ing line groups generated using the augmented closely- 
spaced grouping algorithm within the selected regions 
of Figure lOd. Finally, Figure lOi shows all the match- 
ing groups using the allowable transformations for the 
line groups shown in Figure 10b. By performing similar 
experiments on a number of model object and scenes. 



S.No. M N Mg Avg. 
ki 

Avg. 
mi 

Avg. Group 
constraints 

Num. 1 Watches 
No Selection Model-driven 

Selection 
1. 
2. 
3. 
4. 
5. 

466 
140 
140 
358 
130 

1768 
1768 
2464 
1453 
790 

9 
10 
10 
8 
5 

150 
111 
94 
48 
25 

6 
4 
4 
16 
23 

4 
4 
6 
8 
6 

< 5,0,6,10,3,0> 
<7,0,6,10,5,2> 
<7,0,6,10,5,1> 
<3,1,6,10,1,2> 
<6,0,6,10,2,1> 

1.88x10" 
1.49xl020 

5.6xl020 

2.98xl021 

4.39xl018 

5.9xl0lu 

6.38xl09 

2.86xl010 

6.65xl012 

9-OOxlO11 

Table 4: Estimated search reduction using line groups-based model-driven selection. The terms M,N, Mg,Ng,k{, rm,nj 
are as explained in text. The allowed scale and pose changes in each case are indicated in the augmented group 
constraints. 

we recorded the resulting values of Mg,Ng, m,-, n,-, ki, n,- 
(these terms were denned in Section 5.4) and these are 
shown in Table 5. The number of matches using model- 
driven grouping with prior region selection was calcu- 
lated using the same formula that was given in Sec- 
tion 5.4 and is shown in Column 10 in Table 5. This can 
be compared with the number of matches using model- 
driven line grouping without prior region selection given 
in Table 4. As can be seen from the tables, combining 
line grouping with prior region selection based on cues 
such as color can greatly reduce the estimated search in- 
volved in recognition. This is also corroborated, as we 
will see next, by experiments done with an actual recog- 
nition system. 

Restricting line grouping within prior selected regions 
has the disadvantage though that it relies on the correct- 
ness of the prior selection mechanism. This is not always 
the case. Color-based selection for example, does iden- 
tify a good portion of the regions containing the object. 
But the region isolation is not often very precise so that 
some spurious line segment-containing groups may still 
be formed in such a grouping process. 

7    Actual Search Reduction in a 
Recognition System due to Line 
Groups-based Selection 

Although the search is greatly reduced by performing 
grouping within prior selected color regions, the esti- 
mated numbers are still large (« 10s). A recognition 
system that actually does this amount of search is far 
from practical. These numbers were arrived at using a 
worst-case scenario in which only two pairs of matching 
groups could be found at the end after searching through 
the entire set of possible matching pairs. In practice, we 
expect to find lot of good matching pairs much sooner 
in the search. To test the actual search reduction pos- 
sible in practice, we built a recognition system and in- 
tegrated the line grouping-based selection mechanism to 
record the improvement in performance. The linear com- 
bination of views-based alignment was used for a test- 
bed recognition system [31]. The 3D models were con- 
structed from two 2D views with full correspondence be- 
tween them obtained using a method described in [23]. 
Corner features extracted from both the model and im- 
age were used to perform the alignment and line seg- 
ment features were used for doing the verification. The 

search for corresponding alignment features was done us- 
ing an interpretation tree type search driven from the 
image features [9]. We then used color-based selection 
to isolate areas in the image that are likely to belong 
to the object using the method described in [27]. Then 
line grouping was performed within the selected color 
regions to obtain line groups that match model descrip- 
tions. Two pairs of matching line groups were searched 
and features within the matching pairs were tried for 
finding the alignment transform. Sometimes three pairs 
of matching line groups had to be tried to obtain suf- 
ficient features for good alignment. Figure 11 shows 
an example of recognition being performed with selec- 
tion based on color and line grouping. The model line 
groups and the matching image line groups are as shown 
in Figure 10. A set of matching line groups and the 
corresponding corner features within them that yield a 
transformation that is verified by the recognition system 
to be correct are shown in Figure lie and f. The pro- 
jected model overlayed on the original image is shown in 
Figure llg. By considering several (around 600) ran- 
dom orderings of the list of groups and features within 
groups in a number of different scenes, we recorded the 
average number of matches that needed to be tried before 
successful verification. Some of these results are shown 
in Table 6. The models and scenes are the same as 
those used in Tables 4 and 5, but the features here are 
corners instead of the end points of line segments. The 
number of matches actually explored by the recognition 
system for finding seven corresponding corner features 
using line grouping-based selection within color-selected 
regions are indicated in Column 10 of Table 6. The 
rather larger number of matches for a smaller model 
object in entry 5 of the table is due to the larger size 
of groups (the maximum size was 23) even though the 
number of model groups is small. Compared to the num- 
ber of matches explored, detailed verification was done 
for only a few (about a 1000) of the matches. The esti- 
mated number of matches that would be explored with- 
out selection for seven corresponding features is shown 
in Column 9 for comparison. From these results, we 
concluded that line grouping-based selection when per- 
formed within prior selected regions leads to a tremen- 
dous improvement in the performance of a recognition 
system. 
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S.No M N Mg Avg. 
k. 

Avg. 
mi 

Avg. 
7lj 

Group 
constraints 

Num Matches 
JNo Selection With Prior 

Region Selection 
1. 466 1768 9 26 6 4 < 5,0,6,10,3,0 > 1.88x10" 1.77x10s 

2. 140 1768 10 20 4 4 < 7, 0,6,10, 5, 2 > 1.49xl020 2.07xl08 

3. 140 2464 10 19 4 4 < 7,0,6,10,5,1 > 5.6xl020 1.87x10s 

4. 358 1453 8 • 17 16 6 < 3,1,6,10,1,2 > 2.98xl021 2.39xlOn 

5. 130 790 5 13 23 4 < 6, 0,6,10, 2,1 > 4.39xl018 3.89xl010 

Table 5:   Estimated starch reduction using restricted line groups-based model-driven selection within prior selected 
color regions. 

(e) 

Figure 9: Illustration of color-based model-driven selection, (a)- (b) Two views of a model object used to construct a 
three-dimensional description, (c) A region adjacency graph description of the color regions on the model object, (d) 
A scene in which the object appears,  (e) The result of color-based selection using the model description of (c). 
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Figure 10: Illustration of model-driven selection using line group within prior selected color regions, (a) Edge image 
of a model object showing instances of closely-spaced parallelism between lines, (b) Some of the line groups extracted 
using the grouping algorithm using the constraints oftaero„ = 5,talong = 0,t,oea,.orient = 6,tgiobai-orient = 10. (c) 
An edge image of a scene in which the model object appears, (d) The region isolated using color-based model-driven 
selection, (e)- (h) Matching line groups using successively increasing inter-line spacing as described in text, (i) The 
line groups in the image that are possible matches to the model line groups of (b) under the allowed scale and pose 
changes. 

S.No Model 
corners 

Image 
corners 

Mg Avg. ki 
per scale 

Avg. Avg. Group 
constraints 

Num. N atches 
No Selection Explored in 

recognition 
l. 160 580 7 8 4 3 <5,0,6,10, 3,0> 9.93xl0JU 3.9xl04 

2. 54 580 10 7 3 3 < 7,0,6,10,5,2 > 3.77xl027 8.4x10* 
3. 54 391 10 9 3 3 <7, 0,6,10,5,1 > 2.34xl026 1.5xl04 

4. 114 484 8 11 4 4 <3,1,6,10,1,2> 2.45xl029 9.2x10* 
5. 30 95 5 13 6 3 < 6, 0,6,10,2,1 > 1.13xl020 1.35xl05 

Table 6: Actual search reduction using restricted line groups-based model-driven selection within prior selected color 
regions. Here mi and rij refer to number of corner features (rather than the end points of line segments) within a 
line group. Seven corresponding corner features were used for recognition. 
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Figure 11: Illustration of recognition in the regions selected by the attentional selection mechanism using color and 
line groups, (a) Edge image of a model object showing instances of closely-spaced parallelism between lines, (b) Some 
of the line groups extracted using the grouping algorithm using the constraints ofta„0„ = 5,fa;ons = O,tiocai-orient = 
6, tglobal-orient = 10. (c) An edge image of a scene in which the model object appears, (d) The line groups m the 
image region selected by color that are possible matches to the model line groups of (b) under the allowed scale and 
pose changes, (e)- (f) The pairs of matching model and image line groups that found a good alignment transform. 
The circles here show the matching corner features within the line groups, (g) The model object projected into the 
image of (c) using the alignment transform given by the correspondence shown in (e) and (f). 
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8    Conclusions 

In this chapter we have examined the use of the property 
of closely-spaced parallelism between lines in performing 
data and model-driven selection. Towards this end, a 
scheme for grouping line segments was presented that 
possessed several features that make it compare favor- 
ably with other existing schemes of grouping of edges. 
First, closely-spaced parallelism occurs commonly within 
letter textures and contours of geometrical objects. Sec- 
ondly, the groups generated tend to be compact and 
more likely to come from single objects (particularly in 
the data-driven mode). Also, the number of such groups 
is linear in the number of lines, and can be generated by a 
fast algorithm. Lastly, the size of the groups tends to be 
mostly small, except when merging across objects occurs 
(which can be reduced when grouping is restricted to 
prior selected regions). Thus grouping based on closely- 
spaced parallelism presented here satisfies most of the de- 
sirable requirements of grouping for recognition. Lastly, 
unlike in existing approaches to grouping, we have also 
examined the use of grouping in the model-driven mode. 
In doing so, an analysis of the changes that can occur 
to model line groups due to observation conditions was 
done, and this was found useful in performing model- 
driven selection using such line groups. Finally, since 
closely-spaced line groups tend to span a small portion 
of an object, they are good for achieving reliability in 
selection but may not be as useful in actually solving for 
the pose of the object, as for example, groups assembled 
using other constraints such as convexity. 
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